51 research outputs found

    Anisotropic solitons in dipolar Bose-Einstein Condensates

    Full text link
    Starting with a Gaussian variational ansatz, we predict anisotropic bright solitons in quasi-2D Bose-Einstein condensates consisting of atoms with dipole moments polarized \emph{perpendicular} to the confinement direction. Unlike isotropic solitons predicted for the moments aligned with the confinement axis [Phys. Rev. Lett. \textbf{95}, 200404 (2005)], no sign reversal of the dipole-dipole interaction is necessary to support the solitons. Direct 3D simulations confirm their stability.Comment: 5 pages, 4 figure

    Interaction of pulses in nonlinear Schroedinger model

    Full text link
    The interaction of two rectangular pulses in nonlinear Schroedinger model is studied by solving the appropriate Zakharov-Shabat system. It is shown that two real pulses may result in appearance of moving solitons. Different limiting cases, such as a single pulse with a phase jump, a single chirped pulse, in-phase and out-of-phase pulses, and pulses with frequency separation, are analyzed. The thresholds of creation of new solitons and multi-soliton states are found.Comment: 9 pages, 7 figures. Accepted to Phys. Rev. E, 200

    Nonlinear coupled Alfv\'{e}n and gravitational waves

    Full text link
    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field, and the coupling to compressional Alfv\'{e}n waves. The gravitational waves are considered in the high frequency limit and the plasma is modelled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schr\"{o}dinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected.Comment: 20 pages, revtex4, accepted in PR

    Stability and collective excitations of a two-component Bose-condensed gas: a moment approach

    Full text link
    The dynamics of a two-component dilute Bose gas of atoms at zero temperature is described in the mean field approximation by a two-component Gross-Pitaevskii Equation. We solve this equation assuming a Gaussian shape for the wavefunction, where the free parameters of the trial wavefunction are determined using a moment method. We derive equilibrium states and the phase diagrams for the stability for positive and negative s-wave scattering lengths, and obtain the low energy excitation frequencies corresponding to the collective motion of the two Bose condensates.Comment: 7 pages, 6 figure

    Soliton formation from a pulse passing the zero-dispersion point in a nonlinear Schr\"odinger equation

    Full text link
    We consider in detail the self-trapping of a soliton from a wave pulse that passes from a defocussing region into a focussing one in a spatially inhomogeneous nonlinear waveguide, described by a nonlinear Schrodinger equation in which the dispersion coefficient changes its sign from normal to anomalous. The model has direct applications to dispersion-decreasing nonlinear optical fibers, and to natural waveguides for internal waves in the ocean. It is found that, depending on the (conserved) energy and (nonconserved) mass of the initial pulse, four qualitatively different outcomes of the pulse transformation are possible: decay into radiation; self-trapping into a single soliton; formation of a breather; and formation of a pair of counterpropagating solitons. A corresponding chart is drawn on a parametric plane, which demonstrates some unexpected features. In particular, it is found that any kind of soliton(s) (including the breather and counterpropagating pair) eventually decays into pure radiation with the increase of the energy, the initial mass being kept constant. It is also noteworthy that a virtually direct transition from a single soliton into a pair of symmetric counterpropagating ones seems possible. An explanation for these features is proposed. In two cases when analytical approximations apply, viz., a simple perturbation theory for broad initial pulses, or the variational approximation for narrow ones, comparison with the direct simulations shows reasonable agreement.Comment: 18 pages, 10 figures, 1 table. Phys. Rev. E, in pres

    On the Properties of Two Pulses Propagating Simultaneously in Different Dispersion Regimes in a Nonlinear Planar Waveguide

    Get PDF
    Properties of two pulses propagating simultaneously in different dispersion regimes, anomalous and normal, in a Kerr-type planar waveguide are studied in the framework of the nonlinear Schroedinger equation. Catastrophic self-focusing and spatio-temporal splitting of the pulses is investigated. For the limiting case when the dispersive term of the pulse propagating in the normal dispersion regime can be neglected an indication of a possibility of a stable self-trapped propagation of both pulses is obtained.Comment: 18 pages (including 15 eps figures

    Stability of trapped Bose-Einstein condensates

    Full text link
    In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.Comment: 15 pages, 11 figure

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
    corecore